Some New Classes of Hardy Spaces

YONG-ZHUO CHEN* AND KA-SING LAU

Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Communicated by D. Sarason

Received June 9, 1987; revised October 29, 1987

Let $B^p = \{f: \|f\| = \sup_{T \ge 1} (1/2T) \int_{-T}^T |f|^p)^{1/p} < \infty \}$, $1 . Then <math>B^p$ is the dual of a function algebra A^q on R (Beurling). In this paper, we study the harmonic extensions of f in B^p and in A^q , and the corresponding Hardy spaces H_{B^p} , H_{A^q} . It is shown that a parallel theory for L^∞ , L^l and BMO, H^l can be developed for the above pairs. In particular we prove that for $1 < q \le 2$, $(H_{A^q})^*$ is isomorphic to the Banach space

$$\left\{f \text{ real: } \|f\|_{*,p} = \sup_{T \ge 1} \left(\frac{1}{2T} \int_{-T}^{T} |f - m_T f|^p\right)^{1/p} < \infty\right\},\,$$

where $m_T f = (1/2T) \int_{-T}^T f$. We also prove Burkholder, Gundy, and Silverstein's maximal function characterization for the new Hardy space H_{A^q} , $1 < q \le 2$. © 1989 Academic Press, Inc.

1. Introduction

The limits of the averages $(1/2T)\int_{-T}^{T}|f|^2$, $(1/2T)\int_{-T}^{T}f(x+\tau)\bar{f}(x)\,dx$, where f is a locally integrable function on R, were first used by Bohr, Besicovitch, and Stepanoff in the investigation of almost periodic functions and their discrete spectra [3]. Wiener, in his celebrated memoir of generalized harmonic analysis [18], discovered that the above quantities can be extended to study functions with continuous spectra. He treated such f as sample paths of certain stochastic processes (e.g., white light signals, coin tossing) in his pioneering work of probability, and developed the prediction and filtering theory of stationary processes [19].

For 1 , let

$$B^{p} = \left\{ f : \|f\| = \sup_{T \ge 1} \left(\frac{1}{2T} \int_{-T}^{T} |f|^{p} \right)^{1/p} < \infty \right\}$$

* Current address: Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403.

and

$$M^{p} = \left\{ f \colon \|f\| = \overline{\lim_{T \to \infty}} \left(\frac{1}{2T} \int_{-T}^{T} |f|^{p} \right)^{1/p} < \infty \right\}.$$

These two Banach spaces are the appropriate spaces containing the functions considered by Wiener. They have received much attention recently. In particular, the dualities [2, 7, 12, 14], Fourier transformation [2, 7, 16], multipliers [4, 15], and applications to diffusion equations and the Navier-Stokes equation [1] have been studied by various authors.

By applying the integrated Fourier transformation, an analog of the Plancherel theorem was proved on the spaces B^2 and M^2 [7, 16], and hence such spaces preserve certain properties of L^2 . In this paper we will consider harmonic extensions of functions in B^p and the related spaces. It is found that, in contrast to the above, a theory parallel to L^1 , L^{∞} and H^1 , BMO can be developed.

In [2] Beurling showed that B^p , $1 , is the dual of a certain function algebra <math>A^q$, (1/p) + (1/q) = 1, on R, which can be continuously embedded into L^1 and L^q . Let H_{B^p} , H_{A^p} be the corresponding Hardy spaces. A locally integrable function f on R is said to have the pth Central Mean Oscillation, 1 , if

$$\sup_{T\geqslant 1} \left(\frac{1}{2T} \int_{-T}^{T} |f - m_T f|^p \right)^{1/p} < \infty, \tag{1.1}$$

where $m_T f = (1/2T) \int_{-T}^T f$. We denote this class of functions by CMO^p and the above norm by $\|\cdot\|_{*,p}$. The space CMO^p is similar to the John-Nirenberg BMO [13] by restricting to the intervals centered at 0 only. It contains B^p (by identifying constant functions), and is closed under the Hilbert transformation. Among the other results, we prove that

THEOREM A. For 1 , <math>(1/p) + (1/q) = 1, the dual of H_{A^p} is isomorphic to the real CMO^q .

THEOREM B. For $1 and for any real <math>f, f + i\bar{f} \in H_{A^p}$ if and only if $f^* \in A^p$, where f^* is the nontangential maximal function of f.

Theorem A is the Fefferman-Stein duality characterization of H^1 [11] adapted to the new space H_{A^p} , and Theorem B is the corresponding adaption of Burkholder *et al.* to the maximal function characterization of H^p space [5].

The paper is organized as follows. In Section 2, we summarize the known results for B^p , A^p , and their dualities relevant to this development. In Section 3, we prove some elementary theorems of harmonic extensions for functions in B^p and A^p , and define the corresponding Hardy spaces.

We prove two theorems of maximal functions in Section 4.

THEOREM C. For 1 , there exists <math>c > 0 such that

$$||Mf||_{B^p} \leqslant c ||f||_{B^p}, \qquad \forall f \in B^p,$$

where Mf is the Hardy-Littlewood maximal function of f.

By applying Theorem C and a duality argument, we have

Theorem D. For 1 , there exists <math>c > 0 such that

$$||f^*||_{A^p} \leqslant c ||f||_{H_{A^p}}, \qquad \forall f \in H_{A^p}.$$

In connection with the Hilbert transformation on B^p , the natural space to be considered is CMO^p defined by (1.1). In Section 5 we prove some basic properties of such space. We also introduce a class of measures called *Central Carleson Measure* (C.C. measure) on the upper half plane R^2_+ and prove

THEOREM E. $f \in CMO^2$ if and only if $|\nabla u(x, y)|^2 dx dy$ is a C.C. measure on R_+^2 , where u is the harmonic extension of f on R_+^2 .

In order to prove Theorems A and B, we bring in a new type of atomic space $H^{a,p}$ in Section 6, and show that for $1 , <math>(H^{a,p})^*$ is isomorphic to the real part of CMO^q . In Section 7, we prove that for $1 such atomic space can be identified with <math>H_{A^p}$ by a technique of Calderón [6] and Wilson [20] and Theorem D. Theorem A, B follow as corollaries.

We do not known whether such atomic decomposition holds for $f \in H_{A^p}$, 2 .

2. Preliminaries

Throughout this paper, we will assume 1 , <math>q satisfies (1/p) + (1/q) = 1; f will denote a complex valued locally integrable function on R; \approx will mean equivalence of two norms or Banach spaces. Let

$$B^{p} = \left\{ f : \|f\| = \sup_{T \ge 1} \left(\frac{1}{2T} \int_{-T}^{T} |f|^{p} \right)^{1/p} < \infty \right\},\,$$

and let B_0^p be the subspace of functions f in B^p such that

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f|^p = 0$$

In [16] it is proved that

PROPOSITION 2.1. Let $f \in B^p$. Then $\int_{-\infty}^{\infty} |f(x)|^p / (1+x^2) dx \le c \|f\|^p$ for some c > 0.

It is clear that $\|\cdot\|$ is equivalent to another norm $\|*\|'$ on B^p defined by

$$||f||' = \sup_{T \ge 0} \left(\frac{1}{2T+1} \int_{-T}^{T} |f|^{p} \right)^{1/p}.$$

Let Ω be the set of bounded, positive, integrable even functions ω which are nonincreasing on R^+ and

$$\omega(0) + \int_{-\infty}^{\infty} \omega(x) \, dx = 1.$$

Let

$$A^{p} = \left\{ f : \|f\| = \inf_{\omega \in \Omega} \left(\int |f|^{p} \omega^{-(p-1)} \right)^{1/p} < \infty \right\}.$$

It follows that if p = 1, then $A^p = L^1(R)$.

THEOREM 2.2. (Beurling [2]). (i) A^p is a Banach algebra contained in $L^1 \cap L^p$. (ii) $(A^p)^*$ is isometrically isomorphic to $(B^q, \|\cdot\|')$.

Moreover, it is also known [7] that

THEOREM 2.3. $(B_0^q, \|\cdot\|')^*$ is isometrically isomorphic to A^p .

In [12], Feichtinger introduced another pair of equivalent norms on B^p and A^p as

$$||f|| = \sup_{k \ge 0} (2^{-(k/p)} ||f\chi_k||_p),$$

and

$$||g|| = \sum_{k=0}^{\infty} 2^{k/q} ||g\chi_k||_p,$$

where $f \in B^p$, $g \in A^p$, and χ_k is the characteristic function of P_k , where

$$P_k = \{x: 2^{k-1} < |x| \le 2^k\}, k \ge 1; \qquad P_0 = \{x: |x| < 1\}.$$

The isomorphic duality of A^p and B^q under this setting is clear. Feichtinger [12] also obtained an "atomic characterization" of A^p :

Theorem 2.4. $f \in A^p$ if and only if f admits a representation $f = \sum_{k=0}^{\infty} f_k$ where $\{f_k\}$ are locally integrable functions with support contained in $[-\rho_k, \rho_k]$ and $\sum_{k=0}^{\infty} \rho_k^{1/q} \|f_k\|_p < \infty$.

Moreover, if we let

$$||f||' = \inf \left\{ \sum_{k=0}^{\infty} \rho_k^{1/q} ||f_k||_p \right\},$$

where the infimum is taken over all decompositions as above, then $\|\cdot\|'\approx\|\cdot\|$ on A^p .

Since we are only concerned with equivalent norms, we will, if there is no confusion, use $\|\cdot\|_{A^p}$, $\|\cdot\|_{B^p}$, or just $\|\cdot\|$ without specifying which equivalent norms.

We will also need the following:

PROPOSITION 2.5. Let f be a nonnegative locally integrable function on R; then there exists c > 0 such that

$$\sup_{T\geqslant 1} \frac{1}{2T} \int_{-T}^{T} f \leqslant \sup_{T\geqslant 1} \int_{-\infty}^{\infty} f(x) \frac{T}{x^2 + T^2} dx \leqslant c \sup_{T\geqslant 1} \frac{1}{2T} \int_{-T}^{T} f.$$

Proof. The first inequality is trivial by noticing that

$$\int_{-T}^{T} f(x) \frac{T}{x^2 + T^2} dx \ge \frac{1}{2T} \int_{-T}^{T} f(x) dx.$$

The second inequality follows immediately from the proof of Theorem II in [2].

A more extensive treatment of these inequalities can be found in [7] or [16].

3. HARMONIC EXTENSIONS

Let τ_t be the translation operator defined by $(\tau_t f)(x) = f(x - t)$.

LEMMA 3.1. The spaces B^p , B_0^p , A^q are closed under translations τ_t , and $\|\tau_t\| \leq c(1+|t|)^{1/p}$ for some c>0 in the respective spaces.

Moreover $\lim_{t\to 0} \|\tau_t f - f\| = 0$ for $f \in B_0^p$ and A^p .

Proof. For $f \in B_0^p$, $T \ge 1$, we have

$$\frac{1}{2T} \int_{-T}^{T} |\tau_{t} f|^{p} = \frac{1}{2T} \int_{-T-t}^{T-t} |f|^{p} \leq \frac{2(T+|t|)}{2T} \left(\frac{1}{2(T+|t|)} \int_{-T-|t|}^{T+|t|} |f|^{p} \right).$$

This implies that $\tau_t f \in B_0^p$, and $\|\tau_t\| \leq (1+|t|)^{1/p}$. A simple duality argument implies that $\|\tau_t\|$ also satisfies the same estimate on A^q and B^p .

For the second part, it is easy to show that the statement holds for functions with compact support. A density argument of such functions in B_0^p and A^p will yield the result.

Let $P_y(x) = y/\pi(x^2 + y^2)$ be the Poisson kernel, and let $u(z) = u_y(x) = P_y * f(x)$, where z = x + iy, be the harmonic extension of f on the upper half plane R_+^2 .

THEOREM 3.2. Let $f \in B^p$. Then

- (i) u_v converges to f nontangentially a.e.;
- (ii) there exists c > 0 such that $||u_y|| \le c ||f||, \forall y > 0$,
- (iii) if $f \in B_0^p$, then $\lim_{y \to 0} ||u_y f|| = 0$.

Proof. (i) Let $\phi(z) = (i-z)/(i+z)$ be the conformal mapping from R_+^2 onto the unit disk D and let $F(e^{i\theta}) = f(\phi^{-1}(e^{i\theta}))$. By Proposition 2.1,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |F(e^{i\theta})|^p d\theta = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|f(x)|^p}{1+x^2} dx \le c \|f\|^p < \infty.$$

This implies that $F \in L^p(-\pi, \pi)$ and $P_r * F \to F$ a.e. nontangentially. Hence $u_y \to f$ a.e. nontangentially.

(ii) For any y > 0, $T \ge 1$, we have $c_1, c_2 > 0$ such that

$$\frac{1}{2T} \int_{-T}^{T} |u_{y}|^{p} \leq c_{1} \sup_{h \geq 1} \int_{-\infty}^{\infty} |u_{y}(x)|^{p} P_{h}(x) dx \qquad \text{(by Proposition 2.5)}$$

$$\leq c_{1} \sup_{h \geq 1} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |f(t)|^{p} P_{y}(x-t) dt \right) P_{h}(x) dx$$

$$\leq c_{1} \sup_{h \geq 1} \int_{-\infty}^{\infty} |f(t)|^{p} P_{y+h}(t) dt$$

$$\leq c_{1} c_{2} ||f||^{p} \qquad \text{(by Proposition 2.5 again)}.$$

(iii) follows from $\lim_{t\to 0} \|\tau_t f - f\| = 0$, $f \in B_0^p$ (Lemma 3.1), and a standard argument of the Poisson kernel.

THEOREM 3.3. Let $u(z) = u_y(x)$ be a harmonic function on R_+^2 . Then

$$\sup_{y>0} \|u_y\|_{B^p} < \infty \tag{3.1}$$

if and only if there exists $f \in B^p$ such that $u(z) = P_v * f(x)$.

Proof. The sufficiency follows from Theorem 3.2. To prove the

necessity, we use the same technique as above to transform u(x, y) to $U(re^{i\theta})$ on the unit disk D. It follows that

$$\sup_{0 < r \leq 1} \|U(re^{i\theta})\|_p < \infty,$$

and there exists F such that $U(re^{i\theta}) = P_r * F(\theta)$. By transforming back, we conclude that there exists f, such that $u(z) = P_y * f(x)$, where $f(\phi^{-1}(e^{i\theta})) = F(e^{i\theta})$. To check that $f \in B^p$, we observe that

$$\frac{1}{2T}\int_{-T}^{T}|f|^{p} \leqslant \underline{\lim}_{y\to\infty}\frac{1}{2T}\int_{-T}^{T}|u_{y}|^{p} \leqslant \underline{\lim}_{y\to\infty}\|u_{y}\|_{B^{p}}^{p} < \infty.$$

THEOREM 3.4. Let $f \in A^p$. Then

- (i) u_y converges to f nontangentially a.e. and in the A^p -norm,
- (ii) there exists c > 0 independent of f such that $||u_y|| \le c ||f||$.

Proof. (i) The nontangential convergence follows from $A^p \subseteq L^1 \cap L^p$. The A^p -norm convergence follows from $\lim_{t\to 0} \|\tau_t f - f\| = 0$ and a standard technique of approximation by the Poisson kernel.

Part (ii) follows from Theorem 3.2 (ii) and

$$\langle P_v * f, g \rangle = \langle f, P_v * g \rangle$$

for $f \in A^p$, $g \in B^q$.

THEOREM 3.5. Let $u(z) = u_y(x)$, z = x + iy, be a harmonic function on R^2_+ . Then

$$\sup_{y>0}\|u_y\|_{A^p}<\infty$$

if and only if there exists an $f \in A^p$ such that $u(z) = P_y * f(x)$.

Proof. Since $||u_y||_p \le ||u_y||_{A^p}$, the condition implies that there exists $f \in L^p$ such that $u(z) = P_y * f(x)$. To show that $f \in A^p$, we need only observe that for $g \in B_0^p$,

$$\left| \int fg \right| \leqslant \underline{\lim}_{y \to 0} \int |u_y g| \leqslant \left(\underline{\lim}_{y \to 0} \|u_y\|_{A^p} \right) \|g\|_{B_0^q} \leqslant c \|g\|_{B_0^q}$$

for some c > 0.

The sufficiency follows from Theorem 3.4(ii).

We define H_{B^p} to be the class of analytic functions u(z) on \mathbb{R}^2_+ such that

$$||u||_{H_{B^p}} = \sup_{v>0} ||u_v||_{B^p} < \infty.$$

Similarly we can define H_{A^p} .

PROPOSITION 3.6. Let $f \in B^p$ (or A^p). Then f is almost everywhere the nontangential limit of a $u \in H_{B^p}$ $(H_{A^p}, respectively)$ if and only if $u(z) = P_y * f(x), z = x + iy$, is analytic on R_+^2 .

Moreover $||u||_{H_{B^p}} \approx ||f||_{B^p} (||u||_{H_{A^p}} \approx ||f||_{A^p}, respectively).$

Proof. The case B^p follows from Theorems 3.2 and 3.3. The case A^p follows from Theorem 3.4 and 3.5.

4. MAXIMAL FUNCTIONS

Let Mf be the maximal function of f defined by

$$Mf(x) = \sup_{x \in I} \frac{1}{|I|} \int_{I} |f|,$$

where I is an interval containing x. We will also use $M_T f(x)$ to denote the maximal function of f restricted on [-T, T], i.e.,

$$M_T f(x) = \sup_{x \in I \subseteq [-T, T]} \frac{1}{|I|} \int_I |f|, \quad x \in [-T, T],$$

and $M_T f(x) = 0$, $x \notin [-T, T]$. Let $\lambda_f(\alpha, T) = |\{x \in [-T, T]: M_T f(x) > \alpha\}|$, where $\alpha, T > 0$.

LEMMA 4.1. For any $T \geqslant 1$,

(i)
$$\lambda_f(\alpha, T) \leqslant \frac{4}{\alpha} \int_{\{x \in [-T, T]: M_T f > \alpha/2\}} |f| dx.$$

(ii) For p > 1,

$$\frac{1}{2T} \int_{-T}^{T} |M_T f|^p \leqslant \frac{2^{p+1}p}{p-1} \frac{1}{2T} \int_{-T}^{T} |f(x)|^p dx.$$

Proof. The proof is the same as the one for maximal functions on R [13, Chap. I, Theorem 4.3].

THEOREM 4.2. For any $f \in B^p$, there exists c > 0. such that

$$||Mf||_{B^p} \leq c ||f||_{B^p}.$$

Proof. For $T \ge 1$, let $\Pi_1 = \{I: I \subseteq [-3T, 3T]\}$ and $\Pi_2 = \{J: J \cap (R \setminus [-3T, 3T]) \ne \emptyset\}$, where I, J are intervals, and let

$$N_{3T}f(x) = \sup_{x \in J \in H_2} \left(\frac{1}{|J|} \int_J |f| \right).$$

It is clear that for each x,

$$Mf(x) = \max\{M_{3T}f(x), N_{3T}f(x)\}.$$

By Lemma 4.1(ii), it suffices to show that

$$N_{3T}f(x) \le c \|f\|, \quad x \in [-T, T].$$
 (4.1)

For this, we assume without loss of generality, that $J = [-a, b] \in \Pi_2$ with -a < -3T. Since $x \in [-T, T]$, we have -T < b and hence $a + 2b \ge \max\{b, T\}$,

$$\frac{1}{|J|} \int_{J} |f| = \frac{1}{b+a} \int_{-a}^{b} |f| \leq 2 \frac{1}{2(b+a)} \int_{-a}^{a+2b} |f| \leq 4 \frac{1}{2\alpha} \int_{-\alpha}^{\alpha} |f| \leq 4 \|f\|,$$

where $\alpha = \max\{a, a + 2b\}$. This proves (4.1).

For any f such that $u(x, y) = P_y * f$ exists, let

$$f^{*,\alpha}(x) = \sup_{t \in \Gamma_{\alpha}(x)} |u(t,y)|,$$

where $\Gamma_{\alpha}(x) = \{z = x + iy: |x - t| < \alpha y\}, \, \alpha > 0$, is the nontangential maximal function. It is well known that $f^{*,\alpha}(x) \le cMf(x)$ a.e. [13, Chap. I, Theorem 4.2]. We simply denote $f^* = f^{*,1}$ for $\alpha = 1$.

Let

$$f^+(x) = \sup_{y>0} |u(x, y)|$$

be the radial maximal function. We will prove that f^+ and $f^{*,\alpha}$ are equivalent in the A^p -norm.

LEMMA 4.3. Let f and ϕ be nonnegative real valued functions on R. Then for r > 1,

$$\int (Mf(x))^r \phi(x) dx \le c \int |f(x)|^r (M\phi)(x) dx,$$

where c depends only on r.

Proof. It was proved by Fefferman and Stein in [10].

PROPOSITION 4.4. For any $\alpha > 0$, $||f^{*,\alpha}||_{A^p} \approx ||f^+||_{A^p}$.

Proof. Without loss of generality, we can assume that $\alpha = 1$ and consider f^* only. Note that

$$f^*(x) \le c \{ M[(f^+)^{1/p}](x) \}^p$$

(see [11, p. 170]). Hence

$$\begin{split} \|f^*\|_{A^p} & \leq \sup \left\{ \int f^* \phi \colon \|\phi\|_{B^q} = 1 \right\} \\ & \leq c \sup \left\{ \int \left\{ M \left[(f^+)^{1/p} \right] \right\}^p \phi \colon \|\phi\|_{B^p} = 1 \right\} \\ & \leq c' \sup \left\{ \int f^+ (M\phi) \colon \|\phi\|_{B^q} = 1 \right\} \qquad \text{(by Lemma 4.3)} \\ & \leq c'' \|f^+\|_{A^p} \qquad \text{(by Theorem 4.2)}. \end{split}$$

The reverse inequality is trivial.

In the following, we will estimate the norm of $f^* \in H_{A^p}$ as an H^1 analog.

THEOREM 4.5. Let $f \in H_{A^p}$. Then $||f^*||_{A^p} \le c ||f||_{H_{A^p}}$.

Proof. We will prove

$$\int f^* \phi \leqslant c \int |f|(M\phi) \tag{4.2}$$

for $f \in H_{A^p}$, $\phi \in B^q$, $\phi \ge 0$. It follows that

$$||f^*||_{A^p} \leq \sup \left\{ \int f^* |\phi| \colon ||\phi||_{B^q} = 1 \right\}$$

$$\leq c \sup \left\{ \int |f| (M\phi) \colon ||\phi||_{B^q} = 1 \right\}$$

$$\leq c' ||f||_{A^p},$$

and $||f||_{A^p}$ is equivalent to $||f||_{H_{A^p}}$ (Proposition 3.6).

To prove (4.2), we assume $f \not\equiv 0$ and let B(z) be the Blaschke product formed from zeroes of f(z) and let g(z) = f(z)/B(z). It is clear that |g(x)| = |f(x)|, $|f(z)| \le |g(z)|$; moreover, g has no zeroes and hence \sqrt{g} is well defined. Applying Lemma 4.3 to $|\sqrt{g}|$ with r = 2, we get

$$\int |(\sqrt{g})^*|^2 \phi \leqslant c \int (M\sqrt{g})^2 \phi \leqslant c' \int |g| M\phi$$
 (4.3)

for some c, c' independent of g, ϕ . Note that \sqrt{g} is analytic,

$$(\sqrt{g} * P_y)(x) = (\sqrt{g})(x + iy) = \sqrt{g * P_y(x)}.$$

This implies that

$$g^* = ((\sqrt{g})^2)^* = ((\sqrt{g})^*)^2$$

and (4.3) becomes

$$\int g^*\phi \leqslant c' \int g(M\phi).$$

Inequality (4.2) thus follows from $f^*(x) \leq g^*(x)$, |f(x)| = |g(x)|, and the above inequality.

5. The Space CMO^p

A function f on R is said to have a Central Mean Oscillation of order p if

$$||f||_{*,p} = \sup_{T \ge 1} \left(\frac{1}{2T} \int_{-T}^{T} |f - m_T(f)|^p \right)^{1/p} < \infty,$$

where $m_T(f) = (1/2T) \int_{-T}^{T} f$. We use CMO^p to denote this class of functions.

The above definition generalizes the concept of BMO by replacing the arbitrary interval I with [-T, T]. Note that for BMO, the John-Nirenberg theorem shows that all the norms defined for $1 \le p < \infty$ are equivalent [13]. This is not the case for CMO^p (Proposition 5.2).

PROPOSITION 5.1. For $1 , <math>f \in CMO^p$ if and only if there exists α_T , $T \ge 1$, such that

$$\sup_{T \ge 1} \frac{1}{2T} \int_{-T}^{T} |f - \alpha_T|^p < \infty.$$

Proof. The necessity is clear. The sufficiency is implied by the following inequality:

$$\begin{split} \left(\frac{1}{2T} \int_{-T}^{T} |f - m_{T}(f)|^{p}\right)^{1/p} & \leq \left(\frac{1}{2T} \int_{-T}^{T} |f - \alpha_{T}|^{p}\right)^{1/p} + |m_{T}f - \alpha_{T}| \\ & \leq 2 \left(\frac{1}{2T} \int_{-T}^{T} |f - \alpha_{T}|^{p}\right)^{1/p}. \end{split}$$

It follows that by identifying constant functions, $B^p \subseteq CMO^p$, and that the inclusion is proper (e.g., $f(x) = \ln|x|$, then $f \in CMO^p \setminus B^p$). If f is an odd function, then $f \in CMO^p$ implies that $f \in B^p$ (since $m_T f = 0$ for all $T \ge 1$).

PROPOSITION 5.2. By identifying constant functions, CMO^p is a Banach space.

Moreover, if $1 < p_1 < p_2 < \infty$, then $CMO^{p_2} \subseteq CMO^{p_1}$, and CMO^{p_2} is not dense in CMO^{p_1} .

Proof. We prove the last statement only. Let

$$A_k = \{x \in \mathbb{R}: 2^k \le |x| < 2^k + 2^{k/2}\}, \qquad k = 0, 1, 2, ...,$$

and let

$$f(x) = \sum_{k=0}^{\infty} 2^{k/2p_1} \chi_{A_k}(x) \operatorname{sgn}(x).$$

Since f is an odd function, $m_T(f) = 0$. For $2^k \le T < 2^{k+1}$,

$$\frac{1}{2T} \int_{-T}^{T} |f - m_T(f)|^{p_1} \leq 2^{-k-1} \sum_{j=0}^{k+1} \int_{A_j} |2^{j/2p_1}|^{p_1} dx \leq 1,$$

which implies $f \in CMO^{p_1}$.

We will show that the distance of f to CMO^{p_2} is positive, and hence CMO^{p_2} will not be dense in CMO^{p_1} . Suppose this were not true. We assume without loss of generality that there exists an odd function $g \in CMO^{p_2}$ with $||f-g||_{*,p_1} \leq (1/4)$. Note that by a previous remark, $||g||_{Bp_2} < \infty$. Let

$$E_k = \{ x \in A_k \colon |g(x)| < 2^{(k/2p_1)-2} \}.$$

Then

$$(2^{-(k/2)-2}(3/4)^{p_1}|E_k|)^{1/p_1} \leq \left(2^{-k-2} \int_{A_k} |f-g|^{p_1}\right)^{1/p_1} < (1/4),$$

and hence

$$|A_k \setminus E_k| \ge (1 - (2/3^{p_1})) 2^{(k/2)+1}$$
.

Thus

$$2^{-k-2} \int_{A_k} |g|^{p_2} \ge 2^{(k/2) [(p_2/p_1)-1]-2p_2-1} (1-(2/3^{p_1})),$$

which thends to ∞ as $k \to \infty$, i.e., $||g||_{B^{p_2}} = \infty$. This contradiction completes the proof.

Let

$$f(iy) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \frac{y}{x^2 + y^2} dx,$$

and let

$$A_p(f) = \sup_{y \ge 1} \int_{-\infty}^{\infty} |f(x) - f(iy)|^p P_y(x) dx.$$

As a special case of Theorem 1.1 in [8], we have

THEOREM 5.3. $f \in CMO^p$ if and only if $A_p(f) < \infty$. In this case, there exists k_1, k_2 such that

$$k_2 \|f\|_{*,p}^p \leq A_p(f) \leq k_1 \|f\|_{*,p}^p$$

COROLLARY 5.4. $CMO^p \subseteq L^p(dx/(1+x^2))$.

Proof. By letting y = 1, we have

$$\frac{1}{\pi} \int_{-\infty}^{\infty} |f(x) - f(i)|^p \frac{dx}{1 + x^2} \le A_p(f) \le k_1 \|f\|_{*, p}^p < \infty.$$

This implies that (f-f(i)), and hence $f \in L^p(dx/(1+x^2))$.

For $f \in L^p(dx/(1+x^2))$, p > 1, we define the Hilbert transformation Hf of f by

$$Hf = \frac{1}{\pi} \int_{-\infty}^{\infty} \left(\frac{1}{x - t} + \frac{t}{1 + t^2} \right) f(t) dt$$
$$= \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{|x - t| > \varepsilon} \left(\frac{1}{x - t} + \frac{t}{1 + t^2} \right) f(t) dt.$$

THEOREM 5.5. If $f \in CMO^p$, then $Hf \in CMO^p$ and $||Hf||_{*,p} \le c ||f||_{*,p}$.

Proof. In view of Theorem 5.3, we will show that there exists c > 0 such that for each y > 0,

$$\int |Hf(x) - Hf(iy)|^{p} P_{y}(x) dx \le c \int |f(x) - f(iy)|^{p} P_{y}(x) dx.$$

Let $\phi_y(z) = (z - iy)/(z + iy)$ be a conformal mapping from R_+^2 onto D. Let g on D be defined by

$$g(\phi_y(z)) = f(z) - f(iy),$$

and let \tilde{g} be the conjugate of g on D. Then g(0) = 0 and $\tilde{g}(\phi_{\nu}(x)) = Hf(x) - Hf(iy)$. The above inequality reduces to

$$\int_{\partial D} |\tilde{g}(\theta)|^p d\theta \leqslant c \int_{\partial D} |g(\theta)|^p d\theta,$$

which holds by the M. Riesz theorem.

COROLLARY 5.6. If $f \in B^p$, then $Hf \in CMO^p$ and

$$||Hf||_{*,p} \leq c \inf\{||f-\alpha||_{B^p}: \alpha \text{ is a scalar}\}.$$

We remark that there exists $f \in B^p$ such that $Hf \in CMO^p \setminus B^p$; e.g., let $f = \chi_{[0,\infty)}$. Then $Hf(x) = (1/\pi) \ln |x|$ is the required function.

In the following, we will obtain another equivalent condition for CMO^p , p=2. Let λ be a regular Borel measure on R_+^2 . λ is called a *Central Carleson Measure* (C.C. measure) if

$$N(\lambda) = \sup_{T \ge 1} \frac{1}{2T} \lambda([-T, T] \times [0, T]) < \infty.$$

Proposition 5.7. Let λ be a regular Borel measure on \mathbb{R}^2_+ . Then

$$N(\lambda) \approx \sup_{T \ge 1} \iint P_T(z) d\lambda(z),$$

where $P_T(z) = T/\pi(x^2 + (y+T)^2)$.

Proof. Let z = x + iy. Then for $0 \le |x|$, $y \le T$,

$$P_T(z) = \frac{1}{\pi T((x/T)^2 + (y/T + 1)^2)} \ge \frac{1}{5\pi T}.$$

It follows that

$$N(\lambda) \leqslant \frac{2}{5\pi} \sup_{T \geqslant 1} \iint P_T(z) d\lambda(z).$$

On the other hand, let $A_0 = [-1, 1] \times [0, 1]$ and

$$A_n = \{(x, y): 2^n T < |x|, y \le 2^{n+1} T\}.$$

Then

$$\iint P_T(z) d\lambda(z) \leq \frac{1}{\pi T} \sum_{n=0}^{\infty} \int_{A_n} \frac{1}{(x/T)^2 + (y/T + 1)^2} d\lambda(x, y)$$

$$\leq \frac{1}{2\pi T} \sum_{n=0}^{\infty} \frac{1}{2^{2n}} \lambda(A_n)$$

$$\leq \frac{2}{\pi} N(\lambda).$$

By using the Green's theorem, it is proved in [13, p. 237] that

LEMMA 5.8. If $g(e^{i\theta}) \in L^1(\partial D)$ such that g(0) = 0, then

$$\int_{D} |\nabla g(w)|^{2} (1 - |w|^{2}) dw \approx \int_{\partial D} |g(e^{i\theta})|^{2} d\theta.$$

THEOREM 5.9. $f \in CMO^2$ if and only if $y |\nabla u(x, y)|^2 dx dy$ is a C.C. measure on R^2_+ where $u(x, y) = P_y * f(x)$.

Proof. Let $\phi_T(z) = (z - iT)/(z + iT)$, and let g be defined on D by $g(\phi_T(z)) = f(z) - f(iT)$ as in Theorem 5.5. Then

$$|f(s)-f(iT)|^2 P_T(s) ds = \frac{1}{2\pi} \int_{\partial D} |g(e^{i\theta})|^2 d\theta.$$

The first expression is hence equivalent to the left side of Lemma 5.8, which after converting back to the upper half plane is

$$\iint_{R_+^2} |\nabla u|^2 \left(1 - \left|\frac{z - iT}{z + iT}\right|^2\right) dx dy.$$

Since

$$1 - \left| \frac{z - iT}{z + iT} \right|^2 = \frac{4Ty}{|z + iT|^2} = 4\pi y \ P_T(z),$$

we conclude that $f \in CMO^2$ if and only if $y |\nabla u|^2 dx dy$ is a C.C. measure by Proposition 5.7.

6. Atomic Decomposition and Dualities

A real integrable function ϕ on R is called an (a, p)-atom, 1 , if there exists a bounded interval <math>I centered at 0, with $|I| \ge 2$ such that (i) supp $\phi \subseteq I$, (ii) $\|\phi\|_{L^p} \le |I|^{-(1/q)}$, (iii) $\int_I \phi(x) dx = 0$.

We will use $H^{a,p}$ to denote the class

$${f: f \text{ real}, f = \sum \lambda_k \phi_k, \{\phi_k\} \text{ are } (a, p)\text{-atoms}, \sum |\lambda_k| \leq \infty},$$

and let

$$||f||_{a,p} = \inf \left\{ \sum |\lambda_i| : f = \sum \lambda_i \phi_i \text{ as above} \right\}.$$

Under this norm $H^{a,p}$ is a Banach space. It follows directly from the definition that $||f||_{a,p}$ can be expressed as

$$\inf \left\{ \sum_{k=0}^{\infty} |I_k|^{1/q} \|f_k\|_{L^p} \right\}, \tag{6.1}$$

where the infimum is taken over all representations $f = \sum_{k=0}^{\infty} f_k$ with $\int f_k = 0$ and supp $f_k \subseteq I_k$, I_k is a bounded interval centered at 0, and $|I_k| \ge 2$. Comparing with Feichtinger's decomposition of A^p in Theorem 2.4, we have

$$H^{a,p} \subseteq A^p$$
 and $||f||_{A^p} \leqslant ||f||_{a,p}$.

In the next section we will show that for $1 , <math>||f||_{a,p}$ is actually equivalent to $||f||_{A^p} + ||\bar{f}||_{A^p}$ where \bar{f} is the conjugate of f, and that $H^{a,p}$ is isomorphic to H_{A^p} .

Let
$$I_k = [-2^k, 2^k], k = 0, 1, 2, ...,$$
 and for $f \in H^{a,p}$, let

$$||f||'_{a,p} = \inf \left\{ \sum |\lambda_k| : f = \sum \lambda_k \phi_k, \phi_k \text{ is an } (a, p) \text{-atom, supp } \phi_k \subseteq I_k \right\}.$$

PROPOSITION 6.1. For $f \in H^{a,p}$, $||f||_{a,p} = ||f||'_{a,p}$.

Proof. It follows by definition that $||f||_{a,p} \leq ||f||'_{a,p}$. On the other hand let $f = \sum \lambda_k \phi_k$, where ϕ_k are (a,p)-atoms. For each n, let $\{\phi_{n(k)}\}$ be the subfamily of $\{\phi_k\}$ such that supp $\phi_{n(k)} \subseteq I_n$, but supp $\phi_{n(k)} \not\subseteq I_{n-1}$. Let $b_n = \sum \lambda_{n(k)} \phi_{n(k)}$. Then

$$||b_n||_p \leq \sum |\lambda_{n(k)}| ||\phi_{n(k)}||_{L^p} \leq |I_n|^{-1/q} \sum |\lambda_{n(k)}|.$$

Let

$$\alpha_n = \left(\sum |\lambda_{n(k)}|\right)^{-1} b_n$$
 and $\mu_n = \sum |\lambda_{n(k)}|$.

Then $f = \sum \mu_n \alpha_n$ and

$$\sum_{n} |\mu_{n}| = \sum_{n} \sum_{n(k)} |\lambda_{n(k)}| = \sum_{k} |\lambda_{k}|.$$

This implies that $||f||'_{a,p} \leq ||f||_{a,p}$.

We will use CMO_R^q to denote the class of real functions in CMO_R^q .

THEOREM 6.2. The dual of $H^{a,p}$ is isomorphic to CMO_R^q .

Proof. We will prove the theorem in two parts.

(i) $CMO_R^q \subseteq (H^{a,p})^*$. Let $f \in CMO_R^q$ and put $m_I(f) = (1/2|I|) \int_I f$. For any (a, p)-atom ϕ supported by an interval I, we have

$$\left| \int_{I} \phi f \right| = \left| \int_{I} \phi(f - m_{I}(f)) \right| \leq \|\phi\|_{L^{p}} \left(\int_{I} |f - m_{I}(f)|^{q} \right)^{1/q}$$

$$\leq \left(\frac{1}{|I|} \int_{I} |f - m_{I}(f)|^{q} \right)^{1/q} \leq \|f\|_{*, p}.$$

By passing the inequality to $g = \sum \lambda_i \phi_i \in H^{a,p}$, we have $f \in (H^{a,p})^*$ and $||f||_{(H^{a,p})^*} \leq ||f||_{*,q}$.

(ii) $(H^{a,p})^* \subseteq CMO_R^q$. Let $L \in (H^{a,p})^*$ and let I be an interval centered at $0, |I| \ge 2$. Denote

$$L_0^p(I) = \Big\{ g \in L^p(I) \colon \int_I g = 0 \Big\}.$$

Then $||g||_{a,p} \le |I|^{1/q} ||g||_{L^p(I)}$ and hence

$$|L(g)| \leq \|L\|_{(H^{a,p})^*} \|g\|_{a,p} \leq \|L\| \|I|^{1/q} \|g\|_{L^p(I)}.$$

This implies $L \in L_0^p(I)^* = L^q(I)/C$, where C is the space of constant functions on I. Hence there exists $f \in L^q(I)$ such that

$$L(g) = \int_{I} fg, \qquad g \in L_0^p(I). \tag{6.2}$$

The function f is uniquely determined up to a constant. Let $\{I_n\}_{n=1}^{\infty}$ be an increasing sequence of intervals centered at 0 whose union is R. We can select a sequence $\{f_n\}$ such that $f(x) = f_n(x)$ on I_n satisfies (6.2) for each n, and hence (6.2) holds for any interval I centered at 0.

To show that $f \in CMO_R^q$, we note that for any (a, p)-atom ϕ supported by I,

$$\left| \int_{I} \left(f - m_{I}(f) \right) \phi \right| = \left| \int_{I} f \phi \right| = |L(\phi)| \leqslant ||L||. \tag{6.3}$$

If g is supported by I and $||g||_{L^p} = 1$, we define an (a, p)-atom by

$$\phi = 2^{-1} |I|^{-1/q} (g - m_I(g)).$$

It follows from (6.3) and the fact that $f - m_I(f)$ has mean 0 on I, that

$$|I|^{-1/q} \left| \int_I g(f - m_I(f)) \right| = |I|^{-1/q} \left| \int_I (g - m_I(g))(f - m_I(f)) \right| \leq 2 \|L\|.$$

By taking the supremum on the left side over all g with supp $g \subseteq I$ and $||g||_{L^p} = 1$, we have

$$\left(\frac{1}{|I|}\int_{I}|f-m_{I}(f)|^{q}\right)^{1/q} \leq 2 \|L\|.$$

This implies that $f \in CMO_R^q$ and $||f||_{*,q} \le 2 ||L||$.

7. The Spaces $H^{a,p}$ and $H_{A_p^p}$

For any $f \in A^p$, the conjugate \tilde{f} of f is given by

$$\widetilde{f}(x) = \int \frac{f(t)}{x - t} dt = \lim_{\varepsilon \to 0} \int_{|t| \ge \varepsilon} \frac{f(t)}{x - t} dt.$$

It is easy to show that \tilde{f} is not necessary in A^p (e.g., let $f = \chi_{[-1,1]}$. Then \tilde{f} is not in L^1 hence not in A^p). We let $H_{A_R^p}$ be the class of real-valued functions $f \in A^p$ such that $\tilde{f} \in A^p$, and let

$$||f||_{H_{A_k^p}} = ||f||_{A^p} + ||\widetilde{f}||_{A^p}.$$

It follows from the open mapping theorem that

Proposition 7.1. $H_{A_R^p}$ is isomorphic to H_{A^p} .

In the following, we will identify $H_{A_R^p}$ with the atomic space $H^{a,p}$ for the cases of 1 .

LEMMA 7.2. For
$$1 , $H^{a,p} \subseteq H_{A_R^p}$, and $||f||_{H_{A_R^p}} \le c ||f||_{a,p}$.$$

Proof. We first obseve that if ϕ is supported by an interval I = [-T, T], $T \ge 1$, $\int \phi = 0$, and if g has compact support, then

$$\left| \int \widetilde{\phi}g \right| = \left| \int \left(\frac{1}{\pi} \int \frac{\phi(t)}{x - t} dt \right) g(x) dx \right|$$

$$= \left| \int \phi(t) \left(\frac{1}{\pi} \int \frac{g(x)}{t - x} dx \right) dt \right|$$

$$= \left| \int \phi(t) \left(\frac{1}{\pi} \int \left(\frac{1}{t - x} + \frac{x}{x^2 + 1} \right) g(x) dx \right) dt \right| \qquad \left(\text{by } \int \phi = 0 \right)$$

$$= \left| \int \phi(t) Hg(t) dt \right|$$

$$= \left| \int \phi(t) (Hg(t) - m_I(Hg)) dt \right| \qquad \left(\text{by } \int \phi = 0 \right)$$

$$\leq (|I|^{1/q} \|\phi\|_{L^p}) \|Hg\|_{*, q}$$

$$\leq c(|I|^{1/q} \|\phi\|_{L^p}) \|g\|_{B^q} \qquad \text{(Corollary 5.6)}.$$

If $f \in H^{a,p}$, $f = \sum_k f_k$ as in (6.1), then $f \in A^p$. Also, the above implies

$$\left| \int \widetilde{f}g \right| \leqslant c \left(\sum_{k} |I_{k}|^{1/q} \|f_{k}\|_{L^{p}} \right) \|g\|_{B^{q}},$$

and hence

$$\left| \int \widetilde{f}g \right| \leqslant c \, \|f\|_{a,p} \, \|g\|_{B^q}.$$

Since functions with compact supports are dense in B_0^q , the inequality also holds for $g \in B_0^q$. The duality of B_0^q and A^p (Theorem 2.3) implies that

$$\|\widetilde{f}\|_{A^p} \leqslant c \|f\|_{a,p},$$

i.e., $\tilde{f} \in A^p$. We conclude that $f \in H_{A_p^p}$.

Let C_p denote the class of real-valued functions on R such that both f and $f^* \in A^p$. It follows from Theorem 4.5 that $H_{A_R^p} \subseteq C_p$. In order to show that $C_p \subseteq H^{a,p}$, 1 , we will construct an atomic decomposition of $f \in C_p$ similar to the one used by Calderón [6] and Wilson [20]. Let $P_0 = \{x: |x| \le 1\}$ and let $P_m = \{x: 2^{m-1} < |x| \le 2^m\}, m \in \mathbb{N}$. For any

interval I, let

$$\tilde{I} = \{(x, y) \in R^2_+ : (x - y, x + y) \subseteq I\}$$

be the "tent" region and let

$$\tilde{P}_0 = \{(x, y): |x|, |y| \le 1\},$$

$$\tilde{P}_m = \{(x, y): |x|, |y| \le 2^m\} \setminus \tilde{P}_{m-1}, \qquad m \in N.$$

For $g \in A^p$, let

$$E_k = \{x: |g(x)| > 2^k\} = \bigcup_{j=k}^{\infty} I_{kj}, \quad k \in \mathbb{Z},$$

where $\{I_{k,j}\}$ are disjoint intervals. Define

$$\widetilde{E}_k = \bigcup_j \widetilde{I}_{k,j}, \qquad T_{k,j}^m = (\widetilde{I}_{k,j} \setminus \widetilde{E}_{k+1}) \cap \widetilde{P}_m \qquad \text{(see Fig. 1)}.$$

LEMMA 7.3 Let $g \in A^p$. Then there exists c_1 , $c_2 > 0$ such that

$$\begin{split} c_1 \sum_{m=0}^{\infty} 2^{m/q} \left(\sum_{k=-\infty}^{\infty} 2^{kp} |E_k \cap P_m| \right)^{1/p} \\ \leqslant \|g\|_{A^p} \leqslant c_2 \sum_{m=0}^{\infty} 2^{m/q} \left(\sum_{k=-\infty}^{\infty} 2^{kp} |E_k \cap P_m| \right)^{1/p}. \end{split}$$

FIGURE 1.

Proof. Note that

$$\sum_{m=0}^{\infty} 2^{m/q} \left(\sum_{k=-\infty}^{\infty} 2^{kp} |E_k \cap P_m| \right)^{1/p}$$

$$= \sum_{m=0}^{\infty} 2^{m/q} \left(\sum_{k=-\infty}^{\infty} 2^{kp} \sum_{j=k}^{\infty} |E_j \backslash E_{j+1}) \cap P_m| \right)^{1/p}$$

$$\leq c' \sum_{m=0}^{\infty} 2^{m/q} \left(\sum_{j=-\infty}^{\infty} 2^{jp} |(E_j \backslash E_{j+1}) \cap P_m| \right)^{1/p}$$

$$\leq c' \sum_{m=0}^{\infty} 2^{m/q} ||g\chi_{p_m}||_{L^p}.$$

The last expression is equivalent to $||g||_{A^p}$ (Theorem 2.4). For the reverse inequality, we have

$$\sum_{m=0}^{\infty} 2^{m/q} \|g\chi_{p_m}\|_{L^p} \leq \sum_{m=0}^{\infty} 2^{m/q} \left(\sum_{j=-\infty}^{\infty} 2^{(j+1)p} |(E_j \backslash E_{j+1}) \cap P_m| \right)^{1/p}$$

$$\leq 2 \sum_{m=0}^{\infty} 2^{m/q} \left(\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{j} 2^{kp} |(E_j \backslash E_{j+1}) \cap P_m| \right)^{1/p}$$

$$= 2 \sum_{m=0}^{\infty} 2^{m/q} \left(\sum_{k=-\infty}^{\infty} 2^{kp} \sum_{j=k}^{\infty} |(E_j \backslash E_{j+1}) \cap P_m| \right)^{1/p}$$

$$= 2 \sum_{m=0}^{\infty} 2^{m/q} \left(\sum_{k=-\infty}^{\infty} 2^{kp} |E_k \cap P_m| \right)^{1/p}.$$

Let $\phi \in C^{\infty}(R)$ be a fixed real, even function with supp $\phi \subseteq \{x: |x| \le 1\}, \int \phi = 0$, and $\int_0^{\infty} e^{-\theta} \hat{\phi}(\theta) = -1$. Let $\phi_y(t) = y^{-1} \phi(t/y)$.

Lemma 7.4. For $1 , <math>C_p \subseteq H^{a,p}$.

Proof. We need to show that each $f \in C_p$ admits an (a, p)-atomic decomposition. Let $f \in C_p$ and let $u(x, y) = P_v * f(x)$. Then

$$f(x) = \int_{R_{+}^{2}} \frac{\partial u}{\partial y}(t, y) \,\phi_{y}(x - t) \,dt \,dy \qquad \text{(by [20])}$$
$$= \sum_{m=0}^{\infty} \int_{\tilde{P}_{m}} \frac{\partial u}{\partial y}(t, y) \,\phi_{y}(x - t) \,dt \,dy.$$

We denote the integral by $f_m(x)$. Note that ϕ_y has compact support in $[-2^m, 2^m]$, hence f_m has compact support in $[-2^{m+1}, 2^{m+1}]$. Also $\int \phi = 0$ implies that $\int f_m = 0$. We claim that

$$||f_m||_{L^p} \le \left(\sum_{k=-\infty}^{\infty} 2^{kp} |E_k \cap P_m|\right)^{1/p},$$

where $E_k = \{x: f^{*,2} > 2^k\}$. Since $f^* \in A^p$, Proposition 4.4 implies that $f^{*,2} \in A^p$. In view of Lemma 7.3 (by applying $g = f^{*,2}$), $\{f_m\}$ will be the desired decomposition for f.

Let $h \in L^q(R)$, $||h||_q = 1$, (1/p) + (1/q) = 1. It follows from Holder's inequality that

$$\left| \int h f_m \right| \leq \left(\int_{-\infty}^{\infty} \left(\int_{0}^{\infty} \chi_{\bar{P}_m} y \left| \frac{\partial u}{\partial y} \right|^2 dy \right)^{p/2} dt \right)^{1/p}$$

$$\times \left(\int_{-\infty}^{\infty} \left(\int_{0}^{\infty} |h * \phi_y(t)|^2 \frac{dy}{y} \right)^{q/2} dt \right)^{1/q}$$

$$\leq c_1 \left(\int_{-\infty}^{\infty} \left(\int_{0}^{\infty} \chi_{\bar{P}_m} y |\nabla u|^2 dy \right)^{p/2} dt \right)^{1/p}$$

(since ϕ is a Littlewood-Paley function, apply Theorem 3.5 in [17, Chapter 7])

$$\leq c_2 \left(\sum_{k,j} \int_{-\infty}^{\infty} \left(\int_{0}^{\infty} \chi_{T_{k,j}^m} y |\nabla u|^2 dy \right)^{p/2} dt \right)^{1/p} \quad \text{(since } p/2 \leq 1 \text{)}$$

$$\leq c_2 \left[\sum_{k,j} \left(\int_{I_{k,j} \cap P_m} dt \right)^{1 - (p/2)} \left(\int_{T_{k,j}^m} y |\nabla u|^2 dy dt \right)^{p/2} \right]^{1/p}.$$

By Green's theorem, the double integral is bounded by

$$\int_{\partial T_{k,j}^{m}} |u| y \left| \frac{\partial u}{\partial n} \right| + \frac{1}{2} u^{2} \left| \frac{\partial y}{\partial n} \right| ds$$

 $(\partial/\partial n)$ denote the outward normal direction). Both u and $y|\nabla u|$ are bounded by $c_3 2^k$ on $\partial T_{k,j}^m$. Since $|\partial y/\partial n| \le 1$ and $|\partial T_{k,j}^m| \le c_3 |I_{k,j} \cap P_m|$, the integral is bounded by $c_3 2^{2k} |I_{k,j} \cap P_m|$. Note that c_3 is independent of k, j, m, and u; hence the above estimates imply

$$\left| \int h f_m \right| \leqslant c \left(\sum_{k,j} 2^{kp} |I_{k,j} \cap P_m| \right)^{1/p} = c \left(\sum_{k,j} 2^{kp} |E_k \cap P_m| \right)^{1/p}.$$

It follows that $||f_m||_{L^p}$ is bounded by the left side, and the claim is proved.

THEOREM 7.5. For 1 and for any real <math>f on R, $f + i\tilde{f} \in H_{A^p}$ if and only if $f^* \in A^p$.

Proof. Combining Theorem 4.5, Lemma 7.2 and Lemma 7.4, we have

$$H_{A_R^p} \subseteq C_p \subseteq H^{a,p} \subseteq H_{A_R^p}. \tag{7.1}$$

This implies that $f \in H_{A_R^p}$ if and only if $f^* \in A^p$. Hence the theorem follows from Proposition 7.1.

Theorem 7.6. For $1 , <math>(H_{A^p})^*$ is isomorphic to CMO_R^q .

Proof. It follows from Theorem 6.3, Proposition 7.1, and that $H_{A_R^p} \approx H^{a,p}$ as in (7.1).

COROLLARY 7.7. For $2 \leq p < \infty$, $f \in CMO^p$ if and only if $f = \Psi_1 + H\Psi_2 + \alpha$ where Ψ_1 , $\Psi_2 \in B^p$, α is a constant, and

$$\|\Psi_1\|_{B^p}, \qquad \|\Psi_2\|_{B^p} \leqslant c \|f\|_{*,p}$$

for some constant c.

Moreover,
$$||f||_{*,p} \approx \inf\{||\Psi_1||_{B^p} + ||\Psi_2||_{B^p}: f = \Psi_1 + H\Psi_2 + \alpha\}.$$

Proof. The sufficiency follows from Theorem 5.5. To prove the necessity, we note that Theorem 7.6 implies that $f \in (H_{A^p})^* \approx (H_{A^p_R})^*$, and the same argument for the H^1 duality [13, p. 244] can be applied to show that f has the desired representation. The last statement follows similarly as in [13, p. 248].

Corollary 7.8. For $2 \le p < \infty$, $B^p/H_{B^p} \approx CMO_R^p$.

Proof. For any $\Psi = \Psi_1 + i\Psi_2 \in B^p$, let $\pi \Psi = \Psi_1 + H\Psi_2$. Then π is a bounded linear operator from B^p onto CMO_R^p . Note that $\pi \Psi = 0$ in CMO_R^p if and only if $\Psi_1 + H\Psi_2 = \alpha$, which is equivalent to

$$\Psi_1 + i\Psi_2 = \Psi_1 + i(H\Psi_1 - \alpha) \in H_{B^p}.$$

It follows from the open mapping theorem that B^p/H_{B^p} is isomorphic to CMO_R^p .

COROLLARY 7.9. For $2 \le p < \infty$, and for $f \in B^p$,

$$c_2 \| f - iHf \|_{*,p} \le \text{dist}(f, H_{B^p}) \le c_1 \| f - iHf \|_{*,p},$$

where c_1 , c_2 are absolute constants.

Proof. Similar to the proof of Corollary 4.6 in [13, Chap. 6].

COROLLARY 7.10. or $2 \le p < \infty$, and for any real $f \in B^p$, there exist absolute constants c_1 , c_2 such that

$$c_2 \operatorname{dist}(f, H_{B_p^p}) \leq \operatorname{dist}_*(Hf, B^p) \leq c_1 \operatorname{dist}(f, H_{B_p^p}),$$

where

$$\operatorname{dist}(f, H_{B_p^p}) = \inf\{\|f - \operatorname{Reg}\|_{B^p}: g \in H_{B^p}\},$$

and

$$\operatorname{dist}_*(Hf, B^p) = \inf\{\|Hf - \Psi\|_{*, p} : g \in B^p\}.$$

Proof. Similar to the proof of Corollary 4.7 in [13, Chap. 6].

ACKNOWLEDGMENT

The authors thank the referee for many valuable suggestions in preparing the paper.

Note added in proof. Theorem 7.6 has been extended by José Garcia-Cuerva with 1 .

REFERENCES

- 1. J. Bass, "Fonctions de correlation, fonctions pseudo-aleatoires et applications, Masson, Paris, 1984.
- 2. A. BEURLING, Construction and analysis of some convolution algebra, Ann. Inst. Fourier (Grenoble) 14 (1964), 1–32.
- 3. A. Besicovitch, "Almost Periodic Functions," Dover, New York, 1954.

- 4. J. Bertrandias, Operateurs subordinatifs sur des fonctions bornees en moyenne quadratique, J. Math. Pures Appl. (9) 52 (1973), 27-63.
- 5. D. Burkholder, R. Gundy, and M. Silverstein, A maximal function characterization of the class H^p , Trans. Amer. Math. Soc. 157 (1971), 27-53.
- 6. A. CALDERÓN, An atomic decomposition of distributions in parabolic H^p spaces, Adv. in Math. 25 (1977), 216-225.
- 7. Y. CHEN AND K. LAU, Wiener transformation on functions with bounded averages, *Proc. Amer. Math. Soc.* (to appear).
- 8. Y. CHEN AND K. LAU, On an equivalent class of norms for BMO, J. Aust. Math. Soc. A 46 (1989), 289-295.
- 9. R. COIFMAN AND G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. (N. S.) 83 (1977), 569-645.
- 10. C. Fefferman and E. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
- 11. C. Fefferman and E. Stein, H^p spaces of several variables, *Acta Math.* 129 (1972), 137–193.
- 12. H. FEICHTINGER, An elementrary approach to Wiener's third Tauberian theorem on the Euclidean n-space, Proc. Conf. Catona (1984), Sympos. Math. (1987), in press.
- 13. J. GARNETT, "Bounded Analytic Functions," Academic Press, New York, 1981.
- 14. K. LAU, On the Banach spaces of functions with bounded upper means, *Pacific J. Math.* 91 (1980), 153-173.
- 15. K. Lau, Extensions of Wiener's Tauberian identity and multipliers on the Marcinkiewicz space, Trans. Amer. Math. Soc. 277 (1983), 489-506.
- 16. K. LAU AND J. LEE, On generalized harmonic analysis, Trans. Amer. Math. Soc. 259 (1980), 75-97.
- 17. A. TORCHINSKY, "Real Variable Methods in Harmonic Analysis," Academic Press, New York, 1986.
- 18. N. Wiener, Generalized harmonic analysis, Acta Math. 55 (1930), 117-258.
- 19. N. WIENER, "Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering Applications," The MIT Press, Cambridge, MA, 1949.
- 20. J. Wilson, On the atomic decomposition for Hardy spaces, *Pacific J. Math.* 116 (1985), 201–207.