Reprinted from JOURNAL OF FUNCTIONAL ANALYSIS R Vol. 84, No. 2, June 1989
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Some New Classes of Hardy Spaces
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Let B?={f: | fll =supzrs; (1/2T) [T, |fI?}/» <0}, 1 <p<co. Then B? is the
dual of a function algebra 47 on R (Beurling). In this paper, we study the harmonic
extensions of fin B” and in 49, and the corresponding Hardy spaces H z», H 4. It is
shown that a parallel theory for L®, L' and BMO, H' can be developed for the
above pairs. In particular we prove that for 1 <g <2, (H 4)* is isomorphic to the

Banach space _
1 1/p
{f-real: 171, = sup (2T [ If—mrf|”> < oo},

T=1

where myf=(1/2T) [T, f. We also prove Burkholder, Gundy, and Sllversteln s
maximal function characterization for the new Hardy space Hyp,l<gg2, © 1989

Academic Press, Inc.

1. INTRODUCTION

The limits of the averages (1/27) [T, |fI°, (1/2T) {7 7 fx+7) f(x) dx,
where f is a locally integrable function on R, were first used by Bohr,

Besicovitch, and Stepanoff in the investigation of almost periodic functions

and their discrete spectra [3]. Wiener, in his celebrated memoir of
generalized harmonic analysis [18], discovered that the above quantities

can be extended to study functions with continuous spectra. He treated

such f as sample paths of certain stochastic processes (e.g., white light
signals, coin tossing) in his pioneering work of probability, and developed
the prediction and filtering theory of stationary processes [19].

For 1< p < oo, let

B {f: 1/ = sup (-ZLT I lfl”)l/p< oo}

T=1
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AN ﬁ;rh;o (5] |f|P>”p <ol

These two Banach spaces are the appropriate spaces containing the
functions considered by Wiener. They have received much attention
recently. In particular, the dualities [2, 7, 12, 147, Fourier transformation
[2, 7, 16], multipliers [4, 15], and applications to diffusion equations and
the Navier—Stokes equation [17] have been studied by various authors.

By applying the integrated Fourier transformation, an analog of the
- Plancherel theorem was proved on the spaces B> and M? [7, 16], and
hence such spaces preserve certain properties of L? In this paper we will
consider harmonic extensions of functions in B” and the related spaces. It
is found that, in contrast to the above, a theory parallel to L', L® and
H', BMO can be developed.

In [2] Beurling showed that B?, 1< p < oo, is the dual of a certain
function algebra 49, (1/p)+ (1/q)=1, on R, which can be continuously
embedded into L' and LY Let Hpy,, H,, be the corresponding Hardy
spaces. A locally integrable function f on R is said to have the pth Central
Mean Oscillation, 1 <p < o0, if '

and

1 T ) 1/p
— | _ P
e (gl o) <
where mof=(1/2T) [ . /. We denote this class of functions by CMO” and
the above norm by |- |, ,. The space CMO? is similar to the John-
Nirenberg BMO [13] by restricting to the intervals centered at 0 only.
It contains B” (by identifying constant functions), and is closed under the
Hilbert transformation. Among the other results, we prove that

TaeorREM A. For 1<p<2,(1/p)+(l/q)=1, the dual of H, is
isomorphic to the real CMO?.

THEOREM B. For 1 <p<2 and for any real f, f+ ife H 4 ifand only if
f*e AP, where * is the nontangential maximal function of f.

Theorem A is the Fefferman-Stein duality characterization of H' [11]
adapted to the new space H ,,, and Theorem B is the corresponding adap-
tion of Burkholder er al. to the maximal function characterization of H?”
space [5].

The paper is organized as follows. In Section 2, we summarize the
known results for B?, A”, and their dualities relevant to this development.
In Section 3, we prove some elementary theorems of harmonic extensions
for functions in B” and 47, and define the corresponding Hardy spaces.




SOME NEW CLASSES OF HARDY SPACES 257
We prove two theorems of maximal functions in Section 4.

THEOREM C. For 1 <p < o0, there exists ¢ >0 such that
IMfllgr<clfllp,  VfeB”,

where Mf is the Hardy-Littlewood maximal function of f.
By applying Theorem C and a duality argument, we have

THEOREM D. For 1 <p < 0, there exists ¢ >0 such that
1 N <cfllam — VfEH 4.

In connection with the Hilbert transformation on B”, the natural space
to be considered is CMO? defined by (1.1). In Section 5 we prove some
basic properties of such space. We also introduce a class of measures called
Central Carleson Measure (C.C. measure) on the upper half plane R% and
prove :

TueoreM E. fe CMO? if and only if |Vu(x, y)|? dx dy is a C.C. measure
on R% , where u is the harmonic extension of f on R .

In order to prove Theorems A and B, we bring in a new type of atomic
space H*? in Section 6, and show that for l'<p<oo, (H*?)* is
isomorphic to the real part of CMO?Y In Section 7, we prove that for
1< p<2 such atomic space can be identified with H ,, by a technique of
Calder6n [6] and Wilson [20] and Theorem D. Theorem A; B follo_w as
corollaries.

We do not known whether such atomic decomposxtlon holds for
feH ;,2<p<co.

2. PRELIMINARIES

Throughout this paper, we will assume 1 <p < oo, g satisfies (1/p)+ -
(1/q) =1; f will denote a complex valued locally integrable function on R;
~ will mean equivalence of two norms or Banach spaces. Let

1/p
sr={riifi=sue (7], 1717) "< o0l
and let B be the subspace of functions f in B? such that

. T

lim ﬁJ_T|f|P=O

T— o

In [16] it is proved that
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ProrosiTiON 2.1. Let fe B?. Then j"_ooo L f(x)N?/(1+x*)ydx<c | f|? for
some ¢ > Q.

It is clear that || - || is equivalent to another norm |[*|’ on B” defined by
1 T 1/p
14 — - P .
v =sup (s [ 1717)

Let 22 be the set of bounded, positive, integrable even functions w which
are nonincreasing on R™ and

m(0)+j°° w(x) dx=1.

Let ) | o
» ' 1/p
ar={r=jnt ([ 1170 0-0) Vool
we2 .
It follows that if p=1, then 47 = L*(R).
THEdREM 2.2, (Beurling‘ [2]). | (i) AP” is a Banach algebra contained in

L'~ L7, (ii) (AP)* is isometrically isomorphic to (BY, | -||').

Moreovef, it is also known [7] that

vtTHEOREM 23. (BE |- H’)* is isometrically isomorphic to A”.

In [12], Feichtinger introduced another pair of equivalent norms on B”
and 47 as

1A= sup 2~ fie Nl ),

k=0

and

leglh= > 2" llgxell ,,

k=0
where fe B?, geA?, and y, is the charactéristic function of P, where -
Pr={x:2F""<|x|<2*}Lk=21; Py={x|x|<1}.

The isomorphic duality of 47 and B? under this setting is clear.
Feichtinger [12] also obtained an “atomic characterization” of 47”:

THEOREM 2.4. fe A? if and only if f admits a representation f=3_, f
where {f.} are locally integrable functions with support contained in

[—pk) pk] and ZZO=O pllc/q ”fk ”p< 0.
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Moreover, if we let
Tik =inf{ 2 ol n,,},

where the infimum is taken over all decompositions as above, then || - |' = | - |
on A”.

Since we are only concerned with equivalent norms, we will, if there is no
confusion, use | -|l 4, || -l ge» or just | -| without specifying which
equivalent norms.

We will also need the followmg

PROPOSITION 2.5. Let fbe a nonnegatwe locally integrable function on R;
then there exists ¢ >0 such that

sup—j f<supf f() dx\csup—f f

T>12T T=1 T>1

_ Proof. The first inequality is trivial by noticing that

[ 10 maxz o[y ax

+T2

The second inequality follows immediately from the proof of Theorem II
in [2].

- A more extensive treatment of these inequalitieé' can be found in [7]
or [16].

3. HARMONIC EXTENSIONS
Let 7, be the translation operator defined by (7,./)(x)=f(x —1).

LEMMA 3.1. The spaces B?, Bf, A are closed under translations t,, and
Izl < c(1+ |t])” for some ¢ >0 in the respective spaces.
Moreover lim,_ , ||t,f—f || =0 for fe B and A”*.

Proof. For fe B, T>1, we have

1 T p_l T—1t , 2(T+ |t]) T+|tI »
E'TJ_T'T’f' _?ff_r_,m ST <2(T+ltl)j —mm )

This implies that z,fe BZ, and ||z,|| < (1 + |7])7. A simple duality argument
implies that ||z,| also satisfies the same estimate on 47 and B?.
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For the second part, it is easy to show that the statement holds for
functions with compact support. A density argument of such functions in
Bf and A°” will yield the resulit.

Let P,(x)=y/n(x’+y?) be the Poisson kernel, and let u(z)=u,(x)=
P, *f(x), where z = x + iy, be the harmonic extension of f on the upper half
plane R? .

THEOREM 3.2. Let fe B?. Then

(1) u, converges to f nontangentially a.e.;
(i1) there exists ¢ >0 such that |u, | <c | fll, Vy >0,
(i) if fe BE, then lim, ,, |lu,—f||=0.
Proof. (i) Let ¢(z) = (i —z)/(i + z) be the conformal mapping from R%
onto the unit disk D and let F(e®)=f(¢(e”)). By Proposition 2.1,

|/ (x )|
+

1 7 0y p _1 I »
5] 1) de—;f_w ¢ If117 < oo,

This implies that Fe L?(—n, ) and P, x F—> F a.e. nontangentially. Hence
~ u, — f a.e. nontangentially.

(ii) For any y>O, T=>=1, we have ¢, ¢, >0 such that

p . . N /
5= f P< e, sup f u, ()7 Pu(x) dx - (by Proposition 2.5)

h=1

<clsupj (j If(t)l”P(x—t)dt)Ph(x)dx

hz1"—®

<ersup [7 /(017 Py (1) di

h=1

< c1 c |2 (by Proposition 2.5 again).

(iii) follows from lim,_, ||z, /—fl ——QO,fe B (Lemma 3.1), and a
standard argument of the Poisson kernel.

THEOREM 3.3. Let u(z) =u,(x) be a harmonic function on R? . Then

sup [lu, || g < 0 - (3.1)
y>0

if and only if there exists fe B? such that u(z) = P, * f(x).

Proof. The sufficiency follows from Theorem 3.2. To prove the
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necessity, .we use the same technique as above to transform u(x, y) to
U(re®) on the unit disk D. It follows that

sup [ U(re®), < oo,

O<r<1

and there exists F such that U(re®)= P, « F(0). By transforming back,
we conclude that there exists f, such that wu(z)=P, *f(x), where
f(¢~(e®)) = F(e®). To check that fe B?, we observe that

L7 .1 T o
ﬁf_T'fl”<y11:mwz—T w17 < lim s < co.

THEOREM 3.4. Let fe A?. Then

(i) u, convérges to f nontangentially a.e. and in the A*-norm,
(ii) there exists ¢ >0 independent of f such that |u,|| <c | f].
Proof. (i) The nontangential convergence follows from A” < L' L?.
The AP-norm convergence follows from lim,_, |7, f—f||=0 and a

standard technique of approximation by the Poisson kernel.
Part (ii) follows from Theorem 3.2 (ii) and

(P,f,8>=Xf,P,*g)
for fe A?, ge BY. : '

THEOREM 3.5. Let u(z)=u,(x),z=x+1iy, be a h‘c‘zrmonic, function on
R% . Then ' '

sup [|u, || 4» < 00
y=>0

if and only if there exists an fe A? such that u(z)= P, * f(x).

Proof. Since |u,|, < IIuvaI 47, the condition implies that there exists
JS€L? such that u(z)= P, » f(x). To show that fe A?, we need only observe
that for ge Bg,

“fg' < lim [ |u,g| <<1i_m ||uyuAp> lellsg <cllglsg

y—0 y—0

for some ¢ > 0.
The sufficiency follows from Theorem 3.4(ii).

We define H p, to be the class of analytic functions u(z) on R% such that

l24l| £z, = sup || g < 00.
y>0

Similarly we can define H ,,.
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PROPOSITION 3.6. Let fe B” (or A”). Then f is almost everywhere the
nontangential limit of a ue Hyg, (H ., respectively) if and only if
u(z) =P, = f(x), z=x+1iy, is analytic on R? .

Moreover |[ull y, = || fll 516l 11, = || £l 40> respectively).

Proof. The case B” follows from Theorems 3.2 and 3.3. The case A”
follows from Theorem 3.4 and 3.5.
| 4. MaxiMAL FUNCTIONS

Let Mf be the maximal function of f defined by

o
Mf)=sup | 111,

where I is an interval containing x. We will also use M f(x) to denote the
maximal function of f restricted on [— T, T'], ie.,

XEIE['—T,T]

1
Mrf(x)= swp = [1fl,  xe[-T.T],

and Mpf(x)=0,x¢ [T, T Let Afo;T)=|{xe[—T, T]: My f(x)
>a}|, where a, T> 0.

LEMMA 4.1. For any T>1,

0 A< /1 dx.

AN xe [T, TT: Myf>a/2}

(i1) For p>1,

p

1 T 2041y 1 o1 |
ﬁf_TlMTfl”sp_lpﬁf_Tlf(X)I”dx-

Proof. The proof is the same as the one for maximal functions on R
[13, Chap. I, Theorem 4.3].

THEOREM 4.2. For any fe B?, there exists ¢ > 0. such that

[Mfllg<c 1.1l 20

Proof. For T=1, let II,={I'I<[—3T,3T]} and Il = {J: J
(R\[—=3T,3T])+# &}, where I, J are intervals, and let

Norft)= sup (] 171)

xeJelly
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It is clear that for each x,
Mf(x) = max{M;f(x), Nsrf(x)}.
By Lemma 4.1(ii), it suffices to show that
Nyrf(x)<elfl,  xe[-T, Tl (4.1)

For this, we assume without loss of generality, that J=[ —a, b] € IT, with
—a< —3T. Since xe[—T,T], we have —T<b and hence a+2b>
max{b, T},

a+2b

1 1 b 1 1 r« .
mL'f'='z;Ta ARt lfl<42—af_ f1<4111,

where a =max{a, a+ 2b}. This proves (4.1).
For any f such that u(x, y)=P, *f exists, let

S*Hx)= sup |u(t,y)l,

te Iy(x)

where I, (x)= {z=x+iy:|x—t|<ay},a>0, is the nontangential
maximal function. It is well known that f**(x) <cMf(x) a.e. [13, Chap. I,
Theorem 4.27. We simply denote f* = f*:! for a = 1. '

Let '

£+ () =sup lu(x, »)

y>0

be the radial maximal function. We will prove that f* and f*“ are
equivalent in the 47-norm. '

LeMMA 4.3. Let f and ¢ be nonnegative real valued functions on R. Then
for r>1,

[ r o)y g0 ax < [ 1)1 () (x) dix,

where ¢ depends only on r.

Proof. It was proved by Fefferman and Stein in [10].

PROPOSITION 4.4.  For any a>0, || f**| o= |f | 40.

Proof. Without loss of generality, we can asSumc that « =1 and con-
sider f* only. Note that

SR <c{ML(f*)""10x)}"
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(sge [11, p. 170]). Hence

1 * Lo < sup {ff*qs: 6100 = 1}
<csup {f {(ML(f*)])7g: n¢um=1}

< sup {jf+(M¢): 1| go = 1} ~ (by Lemma 4.3)
<" | f | ar (by Theorem 4.2).

The reverse inequality is trivial.

In the following, we will estimate the norm of f* e H 4» as an H' analog.

‘THEOREM 4.5. Let fe H 4p. Then || f*|| o <c | fll -

Proof. We will prove
[ro<c[1r1009) 42)
for fe H 4, p € B7, ¢ = 0. It follows that

1/ *1La» < sup {Jf*wsl: 615 = 1}

<esup{ [ 1(049): 19150= 1]

< SNy

and | f] 4 is equivalent to |/l ,, (Proposition 3.6).
To prove (4.2), we assume f# 0 and let B(z) be the Blaschke product

formed from zeroes of f(z) and let g(z) =f(z)/B(z). It is clear that | g(x)| =

|/ (x)], |f(z)| <|g(z)|; moreover, g has no zeroes and hence \/g—r is well
defined. Applying Lemma 4.3 to I\/él with r =2, we get

[I/ P e<c | (M Veyd<c [1g1mg ©(43)

for some ¢, ¢’ independent of g, ¢. Note that \/:g— 1s analytic,

(V2 * P)(x)= (V/2)x+iy)=/g * P, (x).
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This implies that

g*=((/2)")*=(2)*)>

and (4.3) becomes
f grp<c fg(M¢)-

Inequality (4.2) thus follows from f*(x) < g*(x), | f(x)| = |g(x)], and the
above inequality.

5. THE SPACE CMO?

A function fon R is said to have a Central Mean Oscillation of order p if

ler= 00 (5[ 17=mer(r1) <o,

where mT(f)=(1/2T)§T f. We use CMO?” to denote this class of
functions.

The above definition generalizes the concept of BMO by replacing the
arbitrary interval I with [—7,7T]. Note that for BMO, the John—
Nirenberg theorem shows that all the norms defined for 1<p<oo are
equivalent [13]. This is not the case for CMO? (Proposition 5.2).

PROPOSITION 5.1. For 1<p< oo, fe CMO? if and only if there exists
o«r, T>=1, such that

1 ¢7T
sup — —ar|? < 0.
Poy) /el

T=1

Proof. The necessity is clear. The sufficiency is implied by the following .
inequality:

(5 r=mene) "< (o] 1r—rl?) " imps—a

1 T 1/p
_ _ r4
<2(2Tf_r|f ar| ) .

It follows that by identifying constant functions, B < CMO?, and that
the inclusion is proper (e.g., f(x) =1n|x|, then fe CMO?\B?). If fis an odd
function, then fe CMO? implies that fe B? (since m,f=0 for all T>1).
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ProrosITION 5.2. By identifying constant functions, CMO7* is a Banach

space. .
Moreover, if 1 <p, <p,< o0, then CMOP*< CMO?', and CMOP?* is not
dense in CMO”",

Proof. We prove the last statement only. Let
Ap={xeR:2*<|x| <2+ 252},  k=0,1,2,..,
and let

Fx)= Y 2%y, (x) sgn(x).

k=0
Since f'is an odd function, m,(f)=0. For 2¥ < T < 2k+1,

k+1

1
r) I men <2 Zf 27 P dx < 1,

which implies fe CMO”.

We will show that the distance of f to CMO?* is positive, and hence
CMO* will not be dense in CMO?”. Suppose this were not true. We
assume without loss of generality that there exists an odd function
ge CMO” with || f—gll,. m<(1/4) Note that by a previous remark
18155, < 0. Let

Ey={xed,:|g(x)| <2®wr=21

Then |
1/py
(2—(@/2)_2(3/4),;1 IEkI)l/pl < <2—k—2 JA |f—g|”1> < (1/4),
k
and hence
IAk\Ekl (1 —(2/371)) 9 (k/2)+1
Thus

2—k~—2f | g| 7 = 2%/ DU pale) =11 =2m2=1(1 _ (2/371Y),
A

k

which thends to oo as k — o, i.e.," || g|| gr, = 00. This contradiction completes
the proof.

Let A
S =2 [ ) mradn
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and let
A,(f)=sup f /() = f(ip)|” P, (x) dx.

ry=1

As a special case of Theorem 1.1 in [8], we have

THEOREM 5.3. fe CMO® if and only if A, (f)< 0. In thzs case, there
exists ky, k, such that

kol Vo, p S A, () <Ky LI

COROLLARY 54. CMO” < L*(dx/(1 + x?)).
Proof. By letting y =1, we have

‘f £() =f ()17 5 2<A (N <k IfI%. , < oo.

This implies that (f—f(7)), and hence fe L?(dx/(1 + x?)).
For fe L?(dx/(1 + x?)), p> 1, we define the Hilbert transformation Hf of

J by
Hf = f < 1+t)f(t)dt

1 .
— lim — + t) dt.
Do ,|>g< 1+z2>-f()

e—->0T X —1

THEOREM 5.5. If fe CMO?, then Hf e CMO? and ||Hf |, ,<c | fl, ,.

Proof. 1In view of Theorem 5.3, we will show that there exists ¢ > 0 such
that for each y >0,

[ 1) = B )12 Py (x) dx<c [ 100 —f@)17 P, (x) d.

Let ¢,(z) = (z—1iy)/(z +iy) be a conformal mapping from R? onto D. Let
g on D be defined by

8(¢,(2))=1(z)—fliy),

and let & be the conjugate of g on D. Then g(0)=0 and
g(¢,(x))= Hf (x) — Hf(iy). The above inequality reduces to

[ 1z@1ra0<c| 120)1 a6,
oD oD

which holds by the M. Riesz theorem.
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COROLLARY 5.6. If fe B?, then Hf e CMO? and

VHf || ., < cinf{|| f— ol g»: o is a scalar}.

We remark that there exists fe B” such that Hfe CMO?\B”; e.g., let
J=Xro0,0)- Then Hf(x)=(1/m)In |x]| is the required function.

In the following, we will obtain another equivalent condition for
CMO?, p=2. Let A be a regular Borel measure on R? . A is called a Ceniral
Carleson Measure (C.C. measure) if

N(/l)——iupl—zlj—,/l([—-T, T]x[0,T])< 0.

PROPOSITION 5.7. Let A be a regular Borel measure on R?% . Then

N(A) ~ sup ” P (2) di(2)

T=1
where Pr(z)=T/n(x*+ (y + T)?).
Proof. Let z=x+iy. Then for 0< |x|, y < T,

1 1
PT(Z)znT((x/T)2+ (y/T+ 1)2)>.SnT'

It follows that

N(A)<3 sup HP (z) dA(2).

Tr>1

On the other hand, let A, =[—1,1]x[0,1] and
A,={(x,y):2"T<|x|, y<2"*'T}.

Then
j Po(z)dA(z) < ¥ ! i
1 =& 1
<mn§0‘2—2—,;/1(14n)
<ZNG)
7T
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By using the Green’s theorem, it is proved in [13, p. 237] that
Lemma 538. If g(e®) e L'(0D) such that g(0)=0, then |
J, VeI (1= 1wl?) dwa [ [g(e®))? do.

THEOREM 5.9. fe CMO? if and only if y|Vu(x, y)|?dxdy is a C.C.
measure on R’ where u(x,y)=P, * f(x). '

Proof. Let ¢T(z)—(z—zT)/(z+zT) and let g be defined on D by
g(dr(2)) f(z) —f(iT) as in Theorem 5.5. Then

|f(s) —fGT)|* Pr(s) ds=% LD | g(e™)]? db.

The first expression is hence equivalent to the left side of Lemma 5 8, which
after converting back to the upper half plane is

” |Vu|2<1— )dxdy
Since '
z—iT|? 4Ty
- —dny P
ciT| " (@),

we conclude that fe CMO? if and only if y qul dx dy is a C.C. measure by
Proposition 5.7.

- 6. AToMIC DECOMPOSITION AND DUALITIES

A real integrable function ¢ on R is called an (a, p)-atom, 1 <p < oo, if
there exists a bounded interval I centered at 0, with |/| >2 such that

(i) supp ¢ =1, (ii) |l o, < |11 ~W9, (iii) [, p(x) dx=0.
We will use H*? to denote the class .

{f:freal,f=z A, {#r} are (a, p)-atoms, Y | 4| <'oo},

and let |
1/, = inf {Z A=) A:¢; as above}.

Under this norm H“? is a Banach space. It follows dlrectly from the
definition that || f|,, can be expressed as o :
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inf{ 5 LA uu}, 6.1)

where the infimum is taken over all representations f= Zk o Jx Wwith
{ fi=0 and suppfi<I, I, is a bounded interval centered at 0, and
|1, | = 2. Comparing with Feichtinger’s decomposition of 47 in Theorem
2.4, we have

H*? < A? and 1N ar <N SNl ap

In the next section we will show that for 1< P<2 |fll., is actually
equivalent to || f|l »+ || f|l.» where fis the conjugate of £, and that H*? is

isomorphic to H .
Let I, = [ —2%, 2%], k 0,1,2,.. and for fe H*?, let

171y =08 {12412~ 5 duss fe s an (a. pratom, supp o = L.

ProposITION 6.1.  For fe H*?, | fll,.,= I fll,-

Proof. It follows by definition that || /||, , < f],. On the other hand
let f=3" A.¢., where ¢, are (a, p)-atoms. For each n, let {44} be the
subfamily of {¢i} such that supp @, <1,, but supp ¢, & In_1 Let

=2 /’{'n(k)¢n(k) Then
16,01, <D 1 Angiy | 1@ ngie Hu <L 7YY A |-

Let

—1 :
Ay = <Z Mn(k) |> b, and - Uy = Z Mn(k) [
Then.f= > u,o, and

Zl#nl—z Z Mn(k)l—zukl
n n(k)

This implies that || fl. , < /]l
We will use CMO 4% to denote the class of real functions in CMO¥Y,

THEOREM 6.2. The dual of H*? is isomorphic to CMOY%,.
Proof. We will prove the theorem in two parts.

(i) CMO‘iC(H‘”’)* Let fe CMO4% and put m,(f)-—(l/ZlIl)j,
For any (a, p)-atom ¢ supported by an interval I, we have -
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J,91]-

J str=mi| <6 ([ 17=meore)

<IIIJ |f— mz(f)lq)l/q's 1A s e

By passing the inequality to g=3 1;4,e H*?, we have fe (H*?)* and
1/ ararye < NSl s, 4

(i) (H*?)*<CMO}4. Let LE(H"”’)* and let 7/ be an interval
centered at O 11| = 2. Denote

Lg(l) = {geLP(I) f g= 0}
Then | gll,, < 7]V | 15y, and hence

| S LI rrarye 181l ap < WL 1Y (| g1l oy

This implies Le L5(I)* = L%(I)/C, where C is the space of constant
functions on 1. Hence there exists fe L?(I) such that

Lg)=| /& gelgd) (62)

The function f'is uniquely determined up to a constant. Let {I }e, be an
increasing sequence of intervals centered at 0 whose union is R. We can
select a sequence {f,} such that f(x)=f, (x) on I, satisfies (6.2) for each n,
and hence (6.2) holds for any interval 7 centered at 0. :

To show that fe CMO4, we note that for any (a, p)-atom ¢ supported
by I, ‘ '

[u=mmo|=|] w|=1z@n<izr. 63
If g is supported by I and | g|[,»,= 1, we define an (g, p)-atom by

g=2""1 17" (g—m,(g))

It follows from (6.3) and the fact that f—m,(f) has mean O on I, that

J (g=mi(N(r=mi ()] <21l

1= | [ etr=mtrn|=1n-

By taking the supremum on the left side over all g with suppg</7 and
|l gll =1, we have

(] 1r=mnie) <212

This implies that fe CMO% and || f], , <2 |Lj.
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7. THE SPACES H*? AND H an

For any fe A%, the conju_gatefof fis given by

F(x) = ﬁf)-dz:limj EAQN”
x—1 e—0 |[|;3x—t

It is easy to show that fis not necessary in A” (e.g, let f=yxr_ 113 Then f
is not in L' hence not in A7). We let H 4n be the class of real-valued
functions fe A7 such that fe A7, and let

LA brap = 1S Wt + 1 F N o

It follows from the open mapping theorem that

ProrosiTioON 7.1. H 4 is isomorphic to H 4.

In the following, we will identify H 42 With the atomic space H“? for the -
cases of 1 <p<2.

Lemma 7.2 For 1<p< o, H*" < H g, and |f1l sy < | /]l

Proof.  We first obseve that if ¢ is supported by an interval
I=[—-T,T], T>1,[$=0, and if g has compact support, then

(-2 )
| - fqﬁ(t)(%f%‘dx) dt
a0 2 )

= || #() Hg(1) ar

(o=

| #(o)Hg(0) — m,(Hg)) ar

(o3

<Y el w) I Hgll
<c(M1V |4lls) llglse  (Corollary 5.6).
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If fe H*?, f=73, fi as in (6.1), then fe A?. Also, the above implies

Tg|<c (I | fillzo ) 1l &1l 5o
7] <e(3 )

and hence

(7| <c 170y Nl

Since functions with compact supports are dense in B¢, the inequality also
holds for ge B§. The duality of B and A” (Theorem 2.3) implies that.

W7 ar < e S Naps
ie., fe A?. We conclude that fe H .

Let C, denote the class of real-valued functions on R such that both f
and f* e A”. It follows from Theorem 4.5 that H 42 < C,. In order to show
that C,= H*?,-1 <p<2, we will construct an atomic decomposition of
fe€ C, similar to the one used by Calder6n [6] and Wilson [20].

Let Po= {x:|x| <1} and let P, = {x:2" '<|x| <2™}, meN. For any
interval 7, let ' '

T={(x,y)eR%: :(x—y,x+y)cI)}
be the “tent” region and let

={(x, y): Ix], [yl <1},

P,
B,={(x,»)Ixl,1yl<2"N\P,_,, meN.
For ge A%, let

Ek={x:|g(x)|>2k}= U Ly, keZz,
, 2

where {I, ;} are disjoint intervals. Define
E=UIL; Tr=0)\NE. )P, (see Fig. 1).
j

LeMMA 7.3 Let ge A?. Then there exists ¢, ¢, >0 such that

[e0) 0 i/p
6 Y 2m/q< 3 2"”|Ekam|> |
m k

=0 = — 00

fe'o) e} 1/p
<lelwse 3 270 ( 5 27 1EAP,l)

m=0 k= —o0
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A
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m
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T4 - \
2 Zm_l \\
m \
/ //T\]S B )
4 , AN AN
o P ij—-—l
FiGure 1.

Proof. Note that '

u s
i
)

/'\

1/p
20 lEkan|>

[ee} [<'e) [e’e] 1/p
= > 2"’/"< > 27y IEj\Ej+1)ﬂPm|>
=0

k= —o0 Jj=k

o o 1/p
< ¥ zm/q( S 27 |(BNE H)uml)
j=—co0

m=0

<c Y 27 gxp, o
m=0

The last expression is equivalent to || g|l ,» (Theorem 2.4).
For the reverse inequality, we have

m=0 m=0

- . oo : i/p
j=

[o’s} 0 J 1/p
<23 2m/q< Sy 2kp|(E,\E,-+1)um|)

[ee] [ee} [ee} 1/p
=2 5 e § 2 3 NG )0 P
m=0 k= —o0 Jj=k .
) " 1/p
2 ¥ 2,,,/,,< L IEkam|>
m=0 k= —o0
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Let ¢ C*(R) be' a ﬁxeq real, even function with suppg¢cs.
{x: x| <1}, § ¢‘= 0, and [P e %(0) = —1. Let ¢,(2) =y '¢(t/y).

LEMMA 74. For 1<p<2, C,cH*?

Proof. We need to show that each | feC, admits an (a, p)-atomic
decomposition. Let fe C, and let u(x, y)= P, * f(x). Then

J(x )—fz —(t y),(x—1t)drdy  (by[20])
-3 L a_z(;,y)qsy(x—z) dt dy.

We denote the integral by f,,(x). Note that ¢, has compact support in
[ —2™, 2™], hence f,, has compact support in [ —27+1, 2" +17] Also [ ¢ =0
implies that | f,,=0. We claim that ,

© 1/p
ML lEkanQ ,

k= —o0

1 nu<<

where E,= {x:f*?>2*}. Since f*e€ A”, Proposition 4.4 implies that
f*:2e 47, In view of Lemma 7.3 (by applying g=/*"?), {f,.} will be the
‘desired decomposition for f.

Let heL(R), ||hll,=1, (l/p) + (l/q)—-l It follows from Holder’s

inequality that
/2 | 1/p
y) dt)

< (J <f XP,,,
(. mesior ) )
< (17, (17 e ) ")

(since ¢ is a Littlewood—Paley function, apply Theorem 3.5
in [17, Chapter 7])

0 [ee) ) p/2  N\1/p i o
S 62 <Z f <JO xrp,y IVul® dy) dt) (since p/2 < 1)
k,j o —®

1—(p/2) p/2-1/p -
N R Ry
3J »J k.j

au

[,
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By Green’s theorem, the double integral is bounded by

f uly |5
0Ty,

(0/0n denote the outward normal direction). Both u and y|Vu| are bounded
by ¢;2% on 9T},. Since |0y/dn] <1 and 0Tl < c5 |1 00 P, |, the integral is
bounded by c322" |1 ;N P,,|. Note that c; is 1ndependent of k, j, m, and u;
hence the above estimates imply

ou 1

2"

. |9y

e ds

[

' 1/p 1/p
<c<z2k” |Ik,ijm|> =c<z2kp IEkam|> .
kej

k.Jj

It follows that [| f,, || .» is bounded by the left side, and the claim is proved.

THEOREM 7.5. For 1<p<2 and for any real f on R, f+ife H ,, if and
only if f¥e A”.

Proof. Combining Theorem 4.5, Lemnﬁa 7.2 and Lemma 7.4, we have
Hpp<sC,c H*? = H 4. (7.1)

This implies that f'e H 4» if and only if f* e A7. Hence the theorem follows
from Propos1t10n 7.1.

THEOREM 7.6. For 1<p<2, (H4)* is isomorphic to CMO}%.

Proof.' It follows from Theorem 6.3, Proposition 7.1, and that
H»~ H*? as in (7.1).

COROLLARY 7.7. For 2<p<oo, feCMO”? if and only if f=%¥,+
H!I’2+oc where ¥,, ¥, e B?, a is a constant, and

1 |l gos ”![’2!|B1’<Cl|f”*,p

for some constant c.
Moreover, | fll ., ,=inf{[| ¥ | gr+ | P2l pr:f= ¥+ HP, +a}.

Proof. The sufficiency follows from Theorem 5.5. To prove the
necessity, we note that Theorem 7.6 implies that f'e (H 4)* ~ (H 4)*, and
the same argument for the H' duality [13, p. 2447 can be applied to show
that f has the desired representation. The last statement follows similarly as
in [13, p. 248].

COROLLARY 7.8. For 2<p < oo, BP°/H gor= CMO%.
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Proof. For any Y=¥,+i¥,eB?, let at%=%¥,+ HY¥,. Then 7 is a
bounded linear operator from B” onto CMO%. Note that n%¥ =0 in CMO¥%,
if and only if ¥, + H¥,=a, which is equivalent to

Y+ iV, =V, +i(H¥,—0o)e Hy.

It follows from the open mapping theorem that B?/H, is isomorphic to
CMO5%,.

COROLLARY 7.9. For 2<p < o0, and for fe B?,

AY
ey | f—iHf ||, , < dist(f, Hgs) <y | /= iHf |,
where ¢y, c, are absolute constants.

Proof. Similar to the proof of Corollary 4.6.in [13, Chap. 6].

CorROLLARY 7.10. or 2<p< oo, and for any real fe B?, there exist
absolute constants c, ¢, such that

¢, dist(f, H ) <dist, (Hf, B?) < ¢, dist(f; Hps),
where | A :
 dist(f, Hg)=inf{||/— Regl s»: g€ Hpz},
and
dist, (Hf, B”) =inf{|[Hf — ¥||, ,: g€ B"}.

Proof. Similar to the proof of Corollary 4.7 in [13, Chap. 6].
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